Introduction to

% éﬁ],’_ﬁg\f/)ﬁ 8,

National Cheng Kung Univ ty

Artificial Intelligence

Chapter 2
Intelligent Agents

Wei-Ta Chu (SR 2E)

Agents and Environments

« An agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators ({&

z3).
/Agent Sensors - \
Percepts
l (T
B
.
H
? S
=
(@]
l =4
Actuators Actions =
O _ N

% @A%x@% 2

nal Cheng Kung University

Agents and Environments

* The term percept refers to the agent’s perceptual inputs at any given instant.
« An agent’s behavior is described by the agent function that maps any given
percept sequence to an action.

« A very simple example—the vacuum-cleaner world

% é!]J_??iJZ)?P 18,

nal Cheng Ku gUmversty

Agents and Environments

« It can choose to move left, move right, suck up the dirt, or do nothing. One

very simple agent function: if the current square is dirty, then suck; otherwise,

move to the other square.

« What is the right way to fill out the table? What makes an agent good or bad,

intelligent or stupid?

Percept sequence

Action

[A, Clean]
[A, Dirty|
[B, Clean]
[B, Dirty]
[A, Clean], [A, Clean]
[A, Clean], [A, Dirty]

[A, Clean], [A, Clean], [A, Clean]
[A, Clean], [A, Clean], [A, Dirty]

Right
Suck
Left
Suck
Right
Suck

Right
Suck

shown in Figure 2.2.

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world

The Concept of Rationality

« Arrational agent is one that does the right thing.

* Right thing: The agent’s actions causes the environment to go through a
sequence of states. If the sequence is desirable, then the agent has performed
well. This notion of desirability is captured by a performance measure that
evaluates any given sequence of environment states.

* Itis better to design performance measures according to what one actually
wants in the environment, rather than according to how one thinks the agent

should behave.

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

Rationality

 Definition of a rational agent
» For each possible percept sequence, a rational agent should select an
action that is expected to maximize its performance measure, given the
evidence provided by the percept sequence and whatever built-in
knowledge the agent has.
 Consider the simple vacuum-cleaner agent. Is this a rational agent? That
depends!
» Performance measure: the amount of dirt being cleaned up

» Performance measure: a clean floor

% é!JJ_??iJZJf 18,

National Cheng Ku gUnlversty

Omniscience, Learning, and Autonomy

 Rationality maximizes expected performance, while perfection maximizes
actual performance.

« OQur definition of rationality does not require omniscience (% %0), because the
rational choice depends only on the percept sequence to date.

 Our definition requires a rational agent not only to gather information but

also to learn as much as possible from what it perceives.

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

Omniscience, Learning, and Autonomy

 Avrational agent should be autonomous—it should learn what it can to
compensate for partial or incorrect prior knowledge.
« A vacuum-cleaning agent that learns to foresee where and when additional
dirt will appear will do better than one that does not.
« The incorporation of learning allows one to design a single rational agent that

will succeed in a vast variety of environments.

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

Task Environments

« Task environment: we have to specify the performance measure, the
environment, and the agent’s actuators and sensors.

« PEAS (Performance, Environment, Actuators, Sensors)

Agent Type Performance Environment Actuators Sensors
Measure
Taxi driver Safe, fast, legal, Roads, other Steering, Cameras, sonar,
comfortable trip, traffic, accelerator, speedometer,
maximize profits pedestrians, brake, signal, GPS, odometer,
customers horn, display accelerometer,
engine sensors,
keyboard
Figure 2.4 PEAS description of the task environment for an automated taxi.

% é!]J_%JZ)f 18,

National Cheng Kung Umvers ity

Task Environments

oQ 2 g2 %

National Cheng Kung University

1931

Agent Type Performance Environment Actuators Sensors
Measure
Medical Healthy patient, Patient, hospital, Display of Keyboard entry
diagnosis system reduced costs staff questions, tests, of symptoms,
diagnoses, findings, patient’s
treatments, answers
referrals

Satellite image
analysis system

Correct image
categorization

Downlink from
orbiting satellite

Display of scene
categorization

Color pixel
arrays

Part-picking Percentage of Conveyor belt Jointed arm and Camera, joint
robot parts in correct with parts; bins hand angle sensors
bins
Refinery Purity, yield, Refinery, Valves, pumps, Temperature,
controller safety operators heaters, displays pressure,
chemical sensors

Interactive Student’s score Set of students, Display of Keyboard entry
English tutor on test testing agency exercises,

suggestions,

corrections

Figure 2.5

Examples of agent types and their PEAS descriptions.

Properties of Task Environments

 Fully observable vs. partially observable
» Fully observable: if the sensors detect all aspects that are relevant to the
choice of action
« Single agent vs. multiagent
* The key distinction 1s whether B’s behavior 1s best described as
maximizing a performance measure whose value depends on agent A’s
behavior.

» Chess Is a competitive multiagent environment

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty

Properties of Task Environments

« Deterministic vs. stochastic
« If the next state of the environment is completely determined by the

current state and the action executed by the agent, then we say the
environment is deterministic; otherwise, it is stochastic.

 Taxi driving is clearly stochastic

» “Stochastic” generally implies that uncertainty about outcomes 1s

quantified in terms of probabilities

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty

Properties of Task Environments

« Episodic (15EIFZEER) vs. sequential
 Episodic: the next episode does not depend on the actions taken in
previous episodes.
« Chess and taxi driving are sequential
 Static vs. dynamic
« If the environment can change while an agent is deliberating (£3), then
we say the environment is dynamic for that agent.
« Taxi driving is clearly dynamic: the other cars and the taxi itself keep

moving while the driving algorithm dithers (J&7%) about what to do next.

% é!JJ_%JZJf 18,

nal Cheng Kung nlversty

Properties of Task Environments

 Discrete vs. continuous
« The chess environment has a finite number of distinct states. Chess also
has a discrete set of percepts and actions. Taxi driving Is a continuous-
state and continuous-time problem.
« Known vs. unknown
* The agent’s (or designer’s) state of knowledge about the “laws of physics”

of the environment.

% é!]J_??iJZ)?P 18,

nal Cheng Ku gUmversty

Properties of Task Environments

Task Environment Observable Agents Deterministic Episodic Static Discrete
Crossword puzzle Fully Single Deterministic Sequential — Static Discrete
Chess with a clock Fully Multi Deterministic Sequential ~ Semi Discrete
Poker Partially =~ Multi ~ Stochastic Sequential Static Discrete
Backgammon Fully Multi ~ Stochastic Sequential Static Discrete
Tax1 driving Partially Multi ~ Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic ~ Sequential Dynamic Continuous
Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous
Refinery controller Partially Single Stochastic ~ Sequential Dynamic Continuous
Interactive English tutor Partially ~ Multi ~ Stochastic Sequential Dynamic Discrete

Figure 2.6

Examples of task environments and their characteristics.

% é!]J_??iJZ)?P 18,

National Cheng Ku gUnlversty

The Structure of Agents

« The job of Al is to design an agent program that implements the agent
function— the mapping from percepts to actions.

« We assume this program will run on some sort of computing device with
physical sensors and actuators—we call this the architecture.

e agent = architecture + program

% é!]J_??iJZ)?P 18,

nal Cheng Ku gUmversty

Agent Programs

« Atrivial agent program

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action <— LOOKUP(percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and
returns an action each time. It retains the complete percept sequence in memory.

» The table-driven approach to agent construction is doomed to failure — tables

could be too huge

% é!]J_??iJZ)?P 18,

National Cheng Ku gUnlversty

Simple Reflex Agents

 Select actions on the basis of the current percept, ignoring the rest of the

percept history.

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if [ocation = A then return Right
else if [ocation = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-state vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

% é!]J_??iJZ)?P 18,

National Cheng Ku gUnlversty

Simple Reflex Agents

* Condition-action rule

« Work only if the correct decision can (e

be made on the basis of only the
current percept—that is, only if the

environment is fully observable.

o

(Condition-action rules

Sensors

What the world

is like now

Actuators

JUSWIUOIIAUT]

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state «— INTERPRET-INPUT(percept)
rule «+— RULE-MATCH(state, rules)
action «— rule. ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches

the current state, as defined by the percept.

Model-based Reflex Agents

« Handle partial observability: the agent keeps track of the part of the world it
can’t see now. The agent should maintain some sort of internal state that

depends on the percept history.

o
4 T
’ ~ Sensors =

Y
!
\
(How the world cvolvcs>—> What the world

is like now

(What my actions do

JUWUOITAUH

Y

TR What action |
CCOndltl()n-d(,tIOn IUICQ—V shoulddonow
Agent

Actuators
Figure 2.11 A model-based reflex agent.

Model-based Reflex Agents

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model, a description of how the next state depends on current state and action
rules, a set of condition—action rules

action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
rule < RULE-MATCH(state, rules)

action <« rule. ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

% :ﬁJJ_%JZ)? 18,

National Cheng Kung Umversnty

Goal-based Reflex Agents

« Knowing the current state of environment is not always enough to decide what
to do. The agent needs some sort of goal information that describes situations
that are desirable.

» The goal-based agent’s behavior can easily be changed to go to a different
destination, simply by specifying that destination as the goal.

 Decision making different from condition-action rules

 Consideration of the future — both “What will happen if I do such-and-
such?” and “Will that make me happy?”

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

Goal-based Reflex Agents

/ ,’--—_-.“
S~ Sensors =

~

\\
Ny
What the world
CHOW the world evolves 1s like now

'

What it will be lik
(What my actions do i?l ld(:vgictioen :4 :

JUWUOJIAUH

- What action [
Goals should do now

Agent Actuators

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

oQ 2 g2 %

National Cheng Kung University

Utility-based Reflex Agents

« Goals alone are not enough to generate high-guality behavior in most
environments. Sometimes, goals are inadequate but a utility-based agent can
still make rational decisions.

* When there are conflicting goals, only some of which can be achieved
« When there are several goals that the agent can aim for
 Arational utility-based agent chooses the action that maximizes the expected

utility of the action outcomes.

% é!JJ_%JZJf 18,

National Cheng Ku gUnlversty

Utility-based Reflex Agents

« Utility-based agent programs handle the uncertainty inherent in stochastic or

partially observable environments.

—_m——
, —
/ S~o Sensors
.
-

V\;hat the world

(How the world evolves is like now
. What it will be like
(What my actions do if T do action A

How happy I will be
in such a state

What action |
should do now

Y
Agent Actuators
O N

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

JUSWIUOITIAUH

_earning Agents

« Learning element is responsible for making improvements, and the
performance element is responsible for selecting external actions.

» The learning element uses feedback from the critic on how the agent is doing
and determines how the performance component should be modified to do

better in the future.

Performance standard

-~

.

Critic |=-#——— Sensors —=

feedback |
changes Y
.

Learning Performance

element element

e P —
knowledge
learning
goals
Problem

generator '

% t&]‘L ?&4@% £ Qgent Actuators

JUWIUOITAUY

National Cheng Kung University

Figure 2.15 A general learning agent.

_earning Agents

* Problem generator is responsible for suggesting actions that will lead to new
and informative experiences.

 If the agent is willing to explore a little and do some perhaps suboptimal
actions in the short run, it might discover much better actions for the long run.
The problem generator’s job is to suggest these exploratory actions.

« Learning in intelligent agents can be summarized as a process of modification
of each component of the agent to bring the components into closer agreement

with the available feedback information.

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

